Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37888937

RESUMO

Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence. Here, we present a proof-of-concept study based on the generation of reactive oxygen species (ROS) by the implant surface in response to X-ray irradiation, including through a layer of 3 mm adipose tissue, providing bactericidal protection. The effect of UV and X-ray irradiation of the implant surface on the ROS formation and the associated bactericidal activity was compared. The focus of our study was light-sensitive Si-doped TiCaCON films decorated with Fe and Pt nanoparticles (NPs) with photoinduced antibacterial activity mediated by ROS. In the visible and infrared range of 300-1600 nm, the films absorb more than 60% of the incident light. The high light absorption capacity of TiO2/TiC and TiO2/TiN heterostructures was demonstrated by density functional theory calculations. After short-term (5-10 s) low-dose X-ray irradiation, the films generated significantly more ROS than after UV illumination for 1 h. The Fe/TiCaCON-Si films showed enhanced biomineralization capacity, superior cytocompatibility, and excellent antibacterial activity against multidrug-resistant hospital Escherichia coli U20 and K261 strains and methicillin-resistant Staphylococcus aureus MW2 strain. Our study clearly demonstrates that oxidized Fe NPs are a promising alternative to the widely used Ag NPs in antibacterial coatings, and X-rays can potentially be used in ROS-regulating therapy to suppress inflammation in case of postimplant complications.

2.
ACS Appl Mater Interfaces ; 15(31): 37274-37289, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499236

RESUMO

We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteogênese , Animais , Camundongos , Titânio/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Regeneração Óssea , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície
3.
ACS Appl Bio Mater ; 5(12): 5595-5607, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36479940

RESUMO

The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (h-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of h-BN and the interaction of surface-modified h-NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional. Theoretical modeling showed that the use of DETA as a binder agent can increase the adhesion strength of BN NPs to textile fabric due to the simultaneous hydrogen bonds with cellulose and BN. Due to the difference in zeta potentials (-38.4 vs -25.8 eV), MA-modified h-BN NPs form a stable suspension, while DETA-modified BN NPs tend to agglomerate. Cotton fabric coated with surface-modified NPs exhibits an excellent wash resistance and high hydrophobicity with a water contact angle of 135° (BN-MA) and 146° (BN-DETA). Compared to the original textile material, treatment with MA- and DETA-modified h-BN NPs increases heat resistance by 10% (BN-MA fabric) and 15% (BN-DETA fabric). Cotton fabrics coated with DETA- and MA-modified BN NPs show enhanced antibacterial activity against Escherichia coli U20 and Staphylococcus aureus strains and completely prevent the formation of an E. coli biofilm. The obtained results are important for the further development of fabrics for sports and medical clothing as well as wound dressings.


Assuntos
Escherichia coli , Nanopartículas , Fibra de Algodão , Temperatura Alta , DEET , Têxteis , Antibacterianos/farmacologia , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Celulose
4.
ACS Appl Mater Interfaces ; 13(20): 23452-23468, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34000197

RESUMO

Utilization of antibacterial components-conjugated nanoparticles (NPs) is emerging as an attractive strategy for combating various pathogens. Herein, we demonstrate that Ag/BN NPs and antibiotic-loaded BN and Ag/BN nanoconjugates are promising carriers to fight bacterial and fungal infections. Extensive biological tests included two types of Gram-positive methicillin-resistant Staphylococcus aureus strains (B8469 and MW2), two types of Gram-negative Pseudomonas aeruginosa strains (ATCC27853 and B1307/17), and 47 types of Escherichia coli strains (including 41 multidrug-resistant ones), as well as five types of fungal cultures: Candida albicans (candidiasis-thrush) ATCC90028 and ATCC24433, Candida parapsilosis ATCC90018, Candida auris CBS109113, and Neurospora crassa wt. We have demonstrated that, even within a single genus Escherichia, there are many hospital E. coli strains with multi-drug resistance to different antibiotics. Gentamicin-loaded BN NPs have high bactericidal activity against S. aureus, P. aeruginosa, and 38 types of the E. coli strains. For the rest of the tested E. coli strains, the Ag nanoparticle-containing nanohybrids have shown superior bactericidal efficiency. The Ag/BN nanohybrids and amphotericin B-loaded BN and Ag/BN NPs also reveal high fungicidal activity against C. albicans, C. auris, C. parapsilosis, and N. crassa cells. In addition, based on the density functional theory calculations, the nature of antibiotic-nanoparticle interaction, the sorption capacity of the BN and Ag/BN nanohybrids for gentamicin and amphotericin B, and the most energetically favorable positions of the drug molecules relative to the carrier surface, which lead to lowest binding energies, have been determined. The obtained results clearly show high therapeutic potential of the antibiotic-loaded Ag/BN nanocarriers providing a broad bactericidal and fungicidal protection against all of the studied pathogens.


Assuntos
Antibacterianos , Compostos de Boro/química , Portadores de Fármacos/química , Nanopartículas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Gentamicinas/química , Gentamicinas/farmacologia
5.
ACS Appl Mater Interfaces ; 12(38): 42485-42498, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845601

RESUMO

In recent years, bacteria inactivation during their direct physical contact with surface nanotopography has become one of the promising strategies for fighting infection. Contact-killing ability has been reported for several nanostructured surfaces, e.g., black silicon, carbon nanotubes, zinc oxide nanorods, and copper oxide nanosheets. Herein, we demonstrate that Gram-negative antibiotic-resistant Escherichia coli (E. coli) bacteria are killed as a result of their physical destruction while contacting nanostructured h-BN surfaces. BN films, made of spherical nanoparticles formed by numerous nanosheets and nanoneedles with a thickness <15 nm, have been obtained through a reaction of ammonia with amorphous boron. The contact-killing bactericidal effect of BN nanostructures has been compared with a toxic effect of gentamicin released from them. For a wider protection against bacterial and fungal infection, the films have been saturated with a mixture of gentamicin and amphotericin B. Such BN films demonstrate a high antibiotic/antimycotic agent loading capacity and a fast initial and sustained release of therapeutic agents for 170-260 h depending on the loaded dose. The pristine BN films possess high antibacterial activity against E. coli K-261 strain at their initial concentration of 104 cells/mL, attaining >99% inactivation of colony forming units after 24 h, same as gentamicin-loaded (150 µg/cm2) BN sample. The BN films loaded with a mixture of gentamicin (150 and 300 µg/cm2) and amphotericin B (100 µg/cm2) effectively inhibit the growth of E. coli K-261 and Neurospora crassa strains. During immersion in the normal saline solution, the BN film generates reactive oxygen species (ROS), which can lead to accelerated oxidative stress at the site of physical cell damage. The obtained results are valuable for further development of nanostructured surfaces having contact killing, ROS, and biocide release abilities.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Compostos de Boro/farmacologia , Escherichia coli/efeitos dos fármacos , Fungos/efeitos dos fármacos , Antibacterianos/química , Antifúngicos/química , Compostos de Boro/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
6.
PLoS One ; 7(10): e47348, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071792

RESUMO

BACKGROUND: Acinetobacter baumannii is known for its ability to develop resistance to the major groups of antibiotics, form biofilms, and survive for long periods in hospital environments. The prevalence of infections caused by multidrug-resistant A. baumannii is a significant problem for the modern health care system, and application of lytic bacteriophages for controlling this pathogen may become a solution. METHODOLOGY/PRINCIPAL FINDINGS: In this study, using atomic force microscopy (AFM) and microbiological assessment we have investigated A. baumannii bacteriophage AP22, which has been recently described. AFM has revealed the morphology of bacteriophage AP22, adsorbed on the surfaces of mica, graphite and host bacterial cells. Besides, morphological changes of bacteriophage AP22-infected A. baumannii cells were characterized at different stages of the lytic cycle, from phage adsorption to the cell lysis. The phage latent period, estimated from AFM was in good agreement with that obtained by microbiological methods (40 min). Bacteriophage AP22, whose head diameter is 62±1 nm and tail length is 88±9 nm, was shown to disperse A. baumannii aggregates and adsorb to the bacterial surface right from the first minute of their mutual incubation at 37°C. CONCLUSIONS/SIGNIFICANCE: High rate of bacteriophage AP22 specific adsorption and its ability to disperse bacterial aggregates make this phage very promising for biomedical antimicrobial applications. Complementing microbiological results with AFM data, we demonstrate an effective approach, which allows not only comparing independently obtained characteristics of the lytic cycle but also visualizing the infection process.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/virologia , Bacteriólise/fisiologia , Bacteriófagos/ultraestrutura , Agentes de Controle Biológico , Microscopia de Força Atômica/métodos , Bacteriófagos/fisiologia
7.
Open Microbiol J ; 6: 22-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22408697

RESUMO

Biointerfaces with a highly sensitive surface designed for specific interaction with biomolecules are essential approaches for providing advanced biochemical and biosensor assays. For the first time, we have introduced a simple AFM-based recognition system capable of visualizing specific bacterial nanofragments and identifying the corresponding bacterial type. For this we developed AFM-adjusted procedures for preparing IgG-based surfaces and subsequently exposing them to antigens. The AFM images reveal the specific binding of Escherichia coli cell fragments to the prepared biofunctional surfaces. Moreover, the binding of bacterial cell fragments to the affinity surfaces can be characterized quantitatively, indicating a 30-fold to 80-fold increase in the quantity of bound antigenic material in the case of a specific antigen-antibody pair. Our results demonstrate significant opportunities for developing reliable sensing procedures for detecting pathogenic bacteria, and the cell can still be identified after it is completely destroyed.

8.
Langmuir ; 24(22): 13068-74, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18850726

RESUMO

Atomic force microscopy (AFM) was used to study the process of infection of bacterial cells by bacteriophages, for which purpose experimental protocols were elaborated. Three types of bacteriophages were characterized with AFM and transmission electron microscopy (TEM). Bacteriophage interaction with cells was studied for three bacterial hosts: Gram-negative Escherichia coli 057 and Salmonella enteritidis 89 and Gram-positive Bacillus thuringiensis 393. Depending on the phase of lytic cycle, different cell surface changes are observed in AFM images of infected cells in comparison with intact cells: from phage adsorption on the cells and flagella to complete lysis of the cells, accompanied by the release of a large number of newly formed phages. Control experiments (cells without phages and cells with nonspecific phages) did not reveal any surface changes. Penetration of phages inside obligate aerobe Bacillus thuringiensis was shown to be oxygen-dependent and required aeration in laboratory conditions. Our results show great potential of using AFM for numerous fundamental and applied tasks connected with pathogen-host interaction.


Assuntos
Bacillus thuringiensis/metabolismo , Bactérias/metabolismo , Escherichia coli/metabolismo , Microscopia de Força Atômica/métodos , Salmonella enteritidis/metabolismo , Fagos Bacilares/metabolismo , Bacteriófagos/metabolismo , Bioquímica/métodos , Contagem de Colônia Microbiana , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...